מעבדה בשיטות הפרדה בניסוי זה נזקק יין, אילו חומרים יש לדעתכם בתוך יין?
|
|
- Ζεβεδαῖος Μεταξάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 מעבדה בשיטות הפרדה בניסוי זה נכיר ונתנסה במספר שיטות הפרדה בין חומרים 1. זיקוק 2. מיצוי 3. סינון 4. כרומטוגרפיה על שכבה דקה )TLC( חלק ראשון:זיקוק יין זיקוק הנו שיטה לטיהור נוזלים והפרדתם מתערובת. בזיקוק מרתיחים נוזל והופכים אותו לגז. מיד אחר כך מקררים את הגז ומעבים אותו בחזרה למצב הנוזלי. כאשר מחממים תערובת המכילה מספר נוזלים, הרכב האדים מעל התערובת יהיה עשיר במרכיבים הנדיפים )בעלי טמפרטורת רתיחה נמוכה(. דרך ההפרדה בתהליך הזיקוק מבוסס על כך שלכל נוזל ישנה טמפרטורת רתיחה מסוימת, המאפיינת אותו. לכן, אם נזקק תערובת בטמפרטורה הקרובה לטמפרטורת הרתיחה של המרכיב הנדיף, הרכב האדים מעל התערובת יכיל בעיקר מרכיב זה, והתזקיק המתקבל יכיל בעיקר אותו. בניסוי זה נזקק יין, אילו חומרים יש לדעתכם בתוך יין? בניית מערכת זיקוק הרכיבו בעזרת המדריך מערכת זיקוק, כפי שמתואר בתרשים א'. לתוך האביק הכניסו 25 מ"ל מי יין, וכמה אבני רתיחה. חברו את מערכת האידוי-עיבוי לברז מים. הדליקו בזהירות את הגזיות.
2 רשמו את הטמפרטורה בה מתחיל היין להזדקק: רשמו את תצפיותיכם, מה קורה בתוך מערכת הזיקוק: בתום הזיקוק, נבדוק האם האלכוהול שהזדקק מכיל מים. מה דעתכם? העבירו לתוך זכוכית שעון נקייה מעט מן האלכוהול שהתקבל בזיקוק, הוסיפו בעזרת ספטולה )כפית של כימאים( מעט אבקה,CuSO 4 והתבוננו בצבע האבקה. קבלת צבע כחול יעיד על הימצאות מים באלכוהול המזוקק. מה הצבע שהתקבל? חלק שני: מיצוי והפרדה של ליקופן וקרוטן מירקות מבוא ליקופן )המצוי בעגבניות ובפירות רבים( ו- β -קרוטן )המצוי בגזר ובכל העלים הירוקים( מיצגים פיגמנטים חומרי צבע טבעיים המשתייכים למשפחת התרכובות הקרוטנואידיות. ליקופן בנוי משרשרת ארוכה של 13 קשרים כפלים מצומדים )מערכת של קשר יחיד ולאחריו קשר כפול, לסירוגין(. ריבוי הקשרים המצומדים הוא המקנה לליקופן את צבעו האדום-כתום העז. הגיאומטריה סביב הקשרים הכפולים במערכת, היא גיאומטריה של טרנס, כפי שניתן לראות במבנה הליקופן.
3 מבנה מולקולת ליקופן β -קרוטן הינה מולקולה נפוצה מאד בעולם הצומח, אך חשיבותה העיקרית היא במערכת הראייה בעולם החי. β -קרוטן משמש פרו-ויטמין A, כלומר, חומר הבסיס ממנו מיצר הגוף החי ויטמין β -קרוטן A. הוא איזומר של הליקופן, בעוד שהליקופן בנוי משרשרת פחממנית מצומדת ארוכה, הרי שב- β -קרוטן ישנן טבעות משושות בשני קצוות השרשרת המצומדת, כפי שמתואר במבנה המולקולה המפורט בהמשך. השוני במבנה מסביר את הבדלי הצבע בין שתי המולוקולות: β -קרוטן בעל צבע צהוב. מבנה המולקולה β -קרוטן הקוטנואידים מסיסים בממימסים אורגניים, ולכן, תהליך הפקתם מן הירקות יבוצע על ידי מיצוי לממס אורגני. לאחר המיצוי תתקבל תמיסה אורגנית המכילה תערובת של מומסים, וביניהם ליקופן ו- β -קרוטן. הפרדת המומסים תתבצע באופן איכותי, בעזרת כרומטורפיה על שכבה דקה.)TLC( מיצוי אפשר למצות חומר מתערובת גולמית או מתמיסה, על ידי משיכתו לממס אחר, בתנאי שהממס אינו מתערבב בממס הראשון, שבתוכו נמצא החומר אותו מעוניינים להפריד. דוגמא נפוצה היא העברת חומר מתמיסה מימית לממס אורגני, תהליך זה נקרא מיצוי. כאשר התרכובת האורגנית )אותה רוצים להפריד( מסיסה הן במים, והן בממס אורגני, יש לטלטל אותה היטב בתערובת של שני הממסים )שאינם מתערבבים אחד בשני(, פעולה הגורמת להתחלקות
4 התרכובת בין שתי הפאזות, בפקטור חלוקה מסויים, האופייני לתערובת מים:ממס אורגני. למיצוי תרכובות אורגניות מתוך תמיסות מימיות בוחרים בממסים אורגניים המתאימים לתרכובת אותה רוצים למצות. למיצוי חומרים קוטביים )פולריים( משתמשים בממסים קוטביים, ולמיצוי חומרים לא-קוטביים משמשים בממסים לא קוטביים. על פעולת המיצוי חוזרים מספר פעמים עם כמויות קטנות של ממס. ד"ר מאירה שראל( )ההסבר לקוח מתוך החוברת "ניסויים בכימיה אורגנית" מאת עבודה במשפך מפריד המיצוי יוצא לפועל בעזרת משפך מפריד. מכניסים את התמיסה למשפך מפריד, ומוסיפים את הממס השני. סוגרים את המשפך בפקק ומטלטלים היטב, כאשר מידי פעם משחררים את הלחץ על ידי פתיחת הברז התחתון, כאשר הוא מופנה כלפי מעלה. במהלך הטלטול מוחזקים היטב במצב סגור הברז והפקק. לאחר גמר הטלטול נותנים למשפך המפריד להימצא במצב זקוף, כאשר הוא יושב בתוך טבעת ברזל והפקק העליון פתוח, ומחכים עד ששתי השכבות מופרדות באופן ברור. פותחים את הברז ומאפשרים לנוזל התחתון לרדת לתוך ארלנמייר. יש לשים לב ולזכור באילו מן השכבות נמצא החומר המבוקש! )ההסבר לקוח מתוך החוברת "ניסויים בכימיה אורגנית" מאת ד"ר מאירה שראל( כרומטוגרפיה כרומטוגרפיה היא שיטה להפרדה ולזיהוי מרכיבים בתערובת. הכרומטוגרפיה כוללת טכניקות רבות, ובכללותה היא מהווה כיום את הטכנולוגיה האנליטית הנפוצה ביותר, במחקר מדעי והן בתעשייה וברפואה. בשיטות כרומטוגרפיות ניתן להפריד תערובות עשירות מרכיבים לחומרים המרכיבים אותן. ורגישות
5 השיטה מאפשרת זיהוי והפרדה גם של חומרים המצויים בכמויות זעירות ביותר בתוך התערובת. הפשוטה בשיטות הכרומטרגפיה הנה כרומטורגפית הנייר, וכרומטוגרפיה על שכרב דקה.TLC - כאשר מטפטפים, לדוגמא, טיפת דיו במרחק מה מקצהו של נייר סופג )או פלטת,)TLC ומעמידים את הנייר בתוך כלי המכיל נוזל בתחתיתו )כך שכתם הדיו נמצא מעל לפני הנוזל אשר בכלי( מטפס הנוזל במעלה הנייר בשל כוחות נימיים )קפילריים(. הנוזל שמטפס במעלה הנייר מפריד את הדיו למרכיביה השונים, כיוון שהמרכיבים השונים נעים במהירויות שונות. לפיכך, נוצרת על פני הנייר סדרת כתמים אשר המרחק ביניהם הולך וגדל ככל שהזמן גדל. כל השיטות הכרומטוגרפיות מבוססות על עיקרון זה: קצב נדידה שונה של חומרים הנישאים על ידי זרימה קבועה של נוזל או גז דרך תווך הקבוע במקומו. התווך הקבוע מכונה הפזה הנחה, ואילו הנוזל או הגז הזורמים דרכו מכונים הפזה הנעה. קצב המעבר של חומר מסוים דרך הפזה הנחה נקבע על ידי חלוקתו בין שתי הפזות. כלומר, תלוי גם בכוחות הפועלים בין מולקולות החומר למולקולות הפזה הנחיית וגם בכוחות הפועלים בין מולקולות החומר למולקולות הפזה הניידת. בכרומטוגרפית הנייר, לדוגמא, תלויה מהירות תנועת חומר מסוים על פני הנייר בנטייה של מולקולות החומר להתמוסס בנוזל לעומת נטייתן להיקשר )להיספח( אל הנייר. ככל שחומר נספח חזק יותר אל הפזה הנחה, כך תהיה מהירות התקדמותו איטית יותר. וככל שמסיסותו של חומר בנוזל גבוהה יותר כל תהיה מהירות התקדמותו על פני הפזה הנחה גבוהה יותר.
6 החלוקה בין שתי הפזות תלויה, אם כן, ביחס בין שתי תכונות פיסיקליות. וההפרדה מבוססת על כך שלחומרים שונים תכונות פיסיקליות שונות, ולפיכך קבועי חלוקה ומהירויות נדידה שונים. ככל שקבועי החלוקה שונים יותר זה מזה, כך תהיה הפרדה טובה יותר. התכונות המעורבות בתהליך ההפרדה תלויות בטיבן של שתי הפזות. לדוגמא, כאשר הפזה הנחה עשויה מחומר קוטבי )פולרי(, היא קושרת אליה חזק יותר חומרים קוטביים )קשרים בין מולקולריים( ואלה נעים דרכה בקצב איטי יותר מחומרים שאינם קוטביים. קיימות שיטות כרומטוגרפיות רבות ושונות. השיטות השונות נקראות לעיתים על פי הפזה הנחה )כרומטוגרפית נייר,,TLC כרומטוגרפית עמודה(, או על פי הפזה הנעה )כרומטוגרפית גז,GC כרומטוגרפית נוזל.)HPLC השיטות השונות דורשות מכשור וציוד שונה, ומתאימות כל אחת לסוגי חומרים ספציפיים.
7 מהלך הניסוי מיצוי הקרוטנואידים מגזר או מרסק עגבניות שקלו בכוס כימית של 50 מ"ל כ- 5 גרם גזר מרוסק או רסק עגבניות הוסיפו לכוס 5 מ"ל של תערובת הממסים למיצוי )אצטון:הקסאן 1:1( ערבבו היטב את התערובת שנוצרה סננו דרך מסנן ביכנר )הניחו על המשפך נייר סינון בגודל מתאים( תוך שימוש במשאבה חיזרו על המיצוי עם שתי מנות נוספות של 5 מ"ל מתערובת הממסים הנ"ל שטפו את רסק הירק שנותר על גבי המסנן ב- מ 5 "ל נוספים של תערובת הממסים אספו את התסנינים משלושת המיצויים ואת תמיסת השטיפה אל כוס כימית נקייה של 50 מ"ל ניקוי התמיסה האורגנית וייבושה ממים העבירו את התמיסה האורגנית לתוך משפך מפריד בנפח 50 מ"ל הוסיפו 15 מ"ל תמיסת נתרן כלוריד רוויה ערבבו היטב את התמיסות והניחו למשפך לעמוד בטבעת המתאימה, עד להפרדת פאזות. מהי הפזה העליונה? מהי הפזה התחתונה? סלקו את הנתרן כלוריד שטפו את התמיסה האורגנית עם 15 מ"ל תמיסת 10% נתרן קרבונאט, וחזרו על פעולת ההפרדה שטפו שוב את הפאזה האורגנית, הפעם בעזרת 15 מ"ל מים וחזרו על פעולת ההפרדה
8 הוספו לתמיסה האורגנית מעט MgSO 4 לייבוש ( 4 MgSO הינו חומר היגרוסקופי סופח מים, אשר יספח את שאריות המים אשר נותרו בפאזה האורגנית( סננו את התמיסה לצורך סילוק ה-. MgSO 4 ביצוע כרומטוגרפיה בשכבה דקה בצעו הפרדה כרומטוגרפית על פלטת אלומינה, המיוחדת ל- TLC. עבור ליקופן טהור, β -קרוטן טהור והחומר אשר מיציתם. ציור 1 מציג את דרך הכנת הדוגמא. יש לצייר בעיפרון קו ישר במרחק 1.0 ס"מ מקצה נייר הכרומטורגמה. על גבי הקו יש להניח בעדינות נקודה קטנה מכל חומר שרוצים להריץ )בעזרת קפילרה(, ולרשום בעיפרון מהי כל נקודה, כפי שמודגם בציור 1. נייר הכרומטוגרמה נקודה של החומרים קו מצוייר בעיפרון, עליו להפרדה מניחים נקודה מכל דוגמא ציור 1: הכנת דוגמא להפרדה בשיטת TLC הפזה הנעה הינה תמיסת אתיל אצטט 2% בתוך הקסאן תמיסה A. מהי הפזה הנחה? לאחר גמר ההפרדה, סמנו את החומרים שהפרדתם על פלטת ה- TLC על פי תוצאות הכרומטוגרמה מה מכילה התערובת שמיציתם מן הירקות?
9
דיאגמת פאזת ברזל פחמן
דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
תרגול למבחן בכימיה אנרגיה בקצב הכימיה פרקים א ו-ב
לפניכם שני תהליכים אנדותרמיים: תרגול למבחן בכימיה אנרגיה בקצב הכימיה פרקים א ו-ב A. H 2 0 (g) H 2(g) + 1/2 O 2(g).1 B. H 2 0 (g) 2H.(g) + O (g) כמות האנרגיה הנקלטת בתהליך A: גדולה מזו הנקלטת בתהליך B.
תשובות לשאלות בפרק ד
תשובות לשאלות בפרק ד עמוד 91: ( היבט מיקרוסקופי ) בהתחלה היו בכלי מולקולות של מגיבים בלבד, אשר התנגשו וכך נוצרו מולקולות מסוג חדש, מולקולות תוצר. קיום של מולקולות תוצר מאפשר התרחשות של תגובה הפוכה, בה
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.
בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
שעור מס' 10 תערובות פשוטות Atkins תערובות פשוטות כימיה פיסיקלית סילבוס קורס
תערובות פשוטות כימיה פיסיקלית - 69167 דני פורת ד"ר Tel: -6586948 e-mail: orath@chem.ch.hui.ac.il Office: Los ngeles 7 Course book: Physical Chemistry P. tkins & J. de Paula (7 th ed) Course site: htt://chem.ch.hui.ac.il/surface-asscher/elad/daniclass.html
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
שעור מס' 10 תערובות פשוטות Atkins גדלים מול ריים חלקיים תערובות פשוטות כימיה פיסיקלית גדלים מול ריים חלקיים סילבוס קורס נפח מולרי חלקי
4 תערובות פשוטות כימיה פיסיקלית - 69167 דני פורת ד"ר Tel: -6586948 e-mil: orth@chem.ch.hui.c.il Office: Los ngeles 7 Course book: Physicl Chemistry P. tkins & J. de Pul (7 th ed Course site: htt://chem.ch.hui.c.il/surfce-sscher/eld/dniclss.html
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
ריאקציות כימיות
ריאקציות כימיות 1.5.15 1 הקדמה ריאקציה כימית היא תהליך שבו מולקולות (הנקראות מגיבים עוברות שינוי ויוצרות מולקולות אחרות (הנקראות תוצרים. הריאקציה יכולה להתרחש בשני הכיוונים. לפני ההגעה לשיווי משקל יהיה
1 חמד"ע / מתכונת כימיה השלמה ל- 5 יחידות תשס "ט פיתרון תשס"ט (50 נקודות) CH 4(g) + H 2 O (g) CO (g) + 3H 2(g) i מערכת? נמק
ל 3 1 חמד"ע - מרכז לחינוך מדעי פיתרון ב ח י נ ה ב כ י מ י ה ב מ ת כ ו נ ת ב ג ר ו ת השלמה מ- - 5 יחידות לימוד תשס"ט - 2009 פרק ראשון - פרק חובה (50 נקודות) תרמודינמיקה ושיווי משקל חמצון-חיזור ענה על אחת
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...
שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
כימיה אורגנית דו"ח מכין
כימיה אורגנית דו"ח מכין נושא המעבדה : הכנת אלקנים ע"י דהידרציה של כהלים. מטרות הניסוי : הכנת איזומרים של 2 מתיל ציקלוהקסאן. משוואת התגובה מנגנון התגובה המלאה בניסוי שלפנינו מנגנון אלימינציה. תהליכי אלימינציה
:ןורטיונ וא ןוטורפ תסמ
פרק ט' -חוק קולון m m e p = 9. 0 = m n 3 kg =.67 0 7 kg מסת אלקטרון: מסת פרוטון או נויטרון: p = e =.6 0 9 מטען אלקטרון או פרוטון: חוק קולון בין כל שני מטענים חשמליים פועל כח חשמלי. הכח תלוי ביחס ישיר למכפלת
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
השלמה מ- 3 ל- 5 יחידות לימוד תשע"א הוראות לנבחן
חמד"ע - מרכז לחינוך מדעי בחינה בכימיה במתכונת בגרות השלמה מ- 3 ל- 5 יחידות לימוד תשע"א -2011 הוראות לנבחן משך הבחינה: שעה וחצי מבנה השאלון ומפתח ההערכה: בשאלון זה שני פרקים. פרק ראשון פרק שני סה"כ 50 נקודות
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
יווקיינ לש תוביציה ןוירטירק
יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב
מתמטיקה בדידה תרגול מס' 2
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.
גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי
מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (
תקציר ההרצאה בנושא מתכות וסגסוגות. סגסוגות ברזל
תקציר ההרצאה בנושא מתכות וסגסוגות. סגסוגות ברזל מתכות וסגסוגות השימוש במתכות טהורות הוא מוגבל יחסית וזה עקב שלוש סיבות שונות: על פי רוב, בנוסף למתכת היעד, עופרות מכילות מספר יסודות נוספים. למרות שבתהליך
Conductive FRP תכנון איל צדוק מהנדס מומחה לבקרת חשמל סטטי מנתח סיכונים של אוירה דליקה וציוד חשמלי. כל הזכויות שמורות
תכנון Conductive FRP אופטימלי ע ם ניטר ול חש מל סט טי איל צדוק מהנדס מומחה לבקרת חשמל סטטי מנתח סיכונים של אוירה דליקה וציוד חשמלי ת.ד. 108, הילה 24953, טל: 04-9572126, פקס: 04-9974585, eyalzad@netvision.net.il
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
קבוע הגזים: משוואת המצב של גז אידיאלי: חוק זה מסכם 3 חוקים פשוטים יותר: חוק :Boyle עבור תהליך איזותרמי )T=const( אין שינוי של קבוע בולצמן:
כימיה פיסיקלית ב )054( חורף תשע"ב קבוע הגזים: קבועים והמרות גז אידיאלי nr L 000 Lt J a ol K ol K ol K R 0.08 8.45 8.45 cal LHg Lorr ol K K ole K ole.987 6.67 6.67 c קבוע בולצמן: R N k k.8 0 B B J K מספר
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
מבוא לרשתות - תרגול מס 5 תורת התורים
מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב
אלגוריתמים ללכסון מטריצות ואופרטורים
אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
www.reshefmd.com רשף משולם לימודי ביולוגיה ורפואה reshefm87@gmail.com 054-3318431 בחינת הידע קבלה לתוכנית ה- 4 שנתית ללימודי רפואה כימייה כללית קשרים כימיים הקשר הכימי התוך מולקולרי העיקרי הוא הקשר הקוולנטי
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
מבוא לרשתות - תרגול מס 5 תורת התורים
מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן
3 יחידות לימוד תשע"א 2011
חמד"ע - מרכז לחינוך מדעי בחינה בכימיה במתכונת בגרות 3 יחידות לימוד תשע"א 20 משך הבחינה: שלוש שעות מבנה השאלון ומפתח ההערכה: בשאלון זה שני פרקים. 40 נקודות פרק ראשון (20x2) - 60 נקודות )20x3( - פרק שני
אלגברה לינארית 1. המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית
אלגברה לינארית 1 Uטענה U: אם c פתרון של המערכת (A b) ו v פתרון של המערכת (0 A) אזי c + v פתרון של המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית
התשובות בסוף! שאלה 1:
התשובות בסוף! שאלה : בעיה באלקטרוסטטיקה: נתון כדור מוליך. חשבו את העבודה שצריך להשקיע כדי להניע יח מטען מן הנק לנק. (הנק נמצאת במרחק מהמרכז, והנק נמצאת במרחק מהמרכז). kq( ) kq ( ) לא ניתן לקבוע שאלה :
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
מדריך. Detector. &Control Data Processing
300 mv 0.00 5.00 1 2 3 Minutes 4 1. Fucose 2. Galactosamine 3. Glucosamine 4. Galactose 5. Glucose 6. Mannose 5 6 20.00 Downloaded from Shula Levin's WebSite of HPLC and LC-MS מדריך ל- HPLC אין כיום מעבדת
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר
מודלים חישוביים תרגולמס 5
מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך
4( מסה m תלויה על חוט בנקודה A ומשוחררת. כאשר היא עוברת בנקודה הנמוכה ביותר B, המתיחות בחוט היא: א. התשובה תלויה באורך החוט.
1( מכונית נעה במהירות קבועה ימינה לאורך כביש מהיר ישר. ברגע בו חולפת המכונית על פני צוק, אבן נופלת כלפי מטה במערכת הייחוס של הצוק. אלו מבין העקומות הבאות מתארת באופן הטוב ביותר את המסלול של האבן במערכת
תרגול #7 עבודה ואנרגיה
תרגול #7 עבודה ואנרגיה בדצמבר 203 רקע תיאורטי עבודה עבודה מכנית המוגדרת בצורה הכללית ביותר באופן הבא: W = W = lf l i x f F dl x i F x dx + y f y i F y dy + z f z i F z dz היא כמות האנרגיה שמושקעת בגוף
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
תרגול 5 פוטנציאל חשמלי ואנרגייה חשמלית
תרגול 5 פוטנציאל חשמלי ואנרגייה חשמלית כפי שהשדה החשמלי נותן אינדקציה לכח שיפעל על מטען בוחן שיכנס למרחב, כך הפוטנציאל החשמלי נותן אינדקציה לאנרגיית האינטרקציה החשמלית. הפוטנציאל החשמלי מוגדר על פי מינוס
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
מורה יקר! שים לב, התשובות הנכונות מסומנות באדום!
מורה יקר! שים לב, התשובות הנכונות מסומנות באדום! בניסוי זה תשחררו ממנוחה שני גלילים על גבי מסילה משופעת העשויה אלומיניום, גליל אחד עשוי חומר מתכתי והאחר עשוי מחומר מגנטי. לכאורה, שני הגלילים אמורים לבצע
1 f. v 2. λ 1 = 1. θ 2 תמונה 2. במשולש sin
"שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד 039 ת"א 6009 חוק השבירה של גלי אור (קרן אור) שם קובץ הניסוי: Seell`s Law.ds חוברת מס' כרך: גלים ואופטיקה מאת: משה גלבמן "שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד
Using Electrochemically Induced ph Change for Coating of Miniature Objects by Organic Nanoparticles
08.12.2009 כ"א כסלו ה'תש"ע האוניברסיטה העברית בירושלים הפקולטה למתמטיקה ולמדעי הטבע המכון לכימיה עבודת גמר לתואר מוסמך בנושא: שימוש באלקטרוכימיה על מנת לבצע שיקוע מבוסס חומציות של ננוחלקיקים אורגנים לציפוי
(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;
מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =
תרגול #6 כוחות (תלות בזמן, תלות במהירות)
תרגול #6 כוחות תלות בזמן, תלות במהירות) 27 בנובמבר 213 רקע תיאורטי כח משתנה כתלות בזמן F תלוי בזמן. למשל: ωt) F = F cos כאשר ω היא התדירות. כח המשתנה כתלות במהירות כח גרר force) Drag הינו כח המתנגד לתנועת
Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}
כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.
טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל
תרגול #14 תורת היחסות הפרטית
תרגול #14 תורת היחסות הפרטית 27 ביוני 2013 עקרונות יסוד 1. עקרון היחסות חוקי הפיסיקה אינם משתנים כאשר עוברים ממערכת ייחוס אינרציאלית (מע' ייחוס שאינה מאיצה) אחת למערכת ייחוס אינרציאלית אחרת. 2. אינווריאנטיות